Während die gängigen Optimierungsverfahren wie der Simplex-Algorithmus rasch exakte Lösungen liefern können, da sie auf deterministische Ausgangsbedingungen aufsetzen, besticht die Monte-Carlo Simulation durch den Ausweis von Wahrscheinlichkeiten. Das ist der Kern.
Der Beizug einer Monte-Carlo Simulation in Kombination mit Korrelationen zeugt von einem tiefen Verständnis des eigenen Geschäftsmodells. Wer es schafft dies sinnvoll einzubauen, legt glaubhaft dar, dass es die eigenen Prozesse, die Interaktion mit der Umwelt (Regulierung, Konkurrenz, Lieferanten, etc.) versteht und somit sein Unternehmen "im Griff" hat.
Wir sind überzeugt, dass die probabilistische Modellbildung die einzig richtige Antwort auf eine durch VUCA geprägte Welt ist.
Wenn die Kosten einer Impfung pro Person gleichverteilt zwischen 20 Euro (Minimum, bester Fall) und 40 Euro (Maximum, schlechtester Fall) betragen, wie hoch werden die Impfkosten für 10 Mio. Menschen im besten und im schlechtesten Fall sein? Genau: In beiden Fällen werden aufgrund des zentralen Grenzwertsatzes die Gesamtkosten sehr nah beim Erwartungswert von 300 Mio. Euro liegen.
DIP stellt die Konsistenz der Daten sicher, auch bei vorhandenen Korrelationen und ermöglicht die einheitenübergreifende Koordination von unsicheren Sachverhalten. Die Simulationsresultate von MC FLO können selbstverständlich in die Cloud und somit in andere Planungssuiten übertragen werden.
In einer unserer letzten Blogs haben wir das Data Mining mittels Simulationen und den Vergleich mit einigen der in R implementierten Klassifizierungsalgorithmen kurz vorgestellt. Hier wollen wir den Sachverhalt anhand der in R verfügbaren Testdaten zu Brustkrebserkennung etwas vertiefen und dabei die benutzerdefinierte Verteilung von MC FLO näher vorstellen.
Simulationen und Markow-Prozesse kombiniert. Vereinfacht kann ein Markow-Prozess so zusammengefasst werden: Bei der Markow Kette handelt sich um einen zufallsbedingten Prozess, aus welcher Vorhersagen auf Basis von Beobachtungen aus der Vergangenheit mittels einer Übergangsmatrix hergeleitet werden
Auch wenn wir bei MC FLO den Fokus auf Excel als Modellierungswerkzeug legen, lohnt sich der Blick auf andere Instrumente, welche sowohl vom Modellkonzept als auch in Bezug auf die Simulation andere Wege einschlagen. Wie Analytica von Lumina.
Wenn Sie eine Planung auf Basis von Simulationen aufsetzen, seien Sie sich bewusst, dass die Unsicherheit nicht eliminiert ist und Sie in weiten Teilen auf Basis von Annahmen die Planung gestalten müssen. Im Gegensatz zur «einwertigen» Planung haben Sie aber mit der Simulation das richtige Instrument in der Hand, um auf Basis von nachvollziehbaren Zahlen und unter Einschluss der Wechselwirkungen von Geschäftsprozessen eine bessere Entscheidung treffen zu können.
MC FLO ist das führende Excel Monte-Carlo Simulationstool, welches als Alleinstellungsmerkmal konsequent den Namensmanager von Excel verwendet und somit die Modelllogik untrennbar mit der Präsentations - oder Reportinglogik verknüpft. Damit werden maximale Transparenz bei nahtloser Nachvollziehbarkeit sichergestellt und Manipulationen bei der Darstellung unterbunden.
Bei der Portfoliobildung von Investitionen sind im Regelfall Nebenbedingungen zu berücksichtigen, etwa die verfügbaren Mitarbeiter oder finanzielle Beschränkungen, welche durch das Budget vorgegeben sind.
Wir zeigen auf, wie ein Portfolio aus Investitionen in Projekten zusammensetzen ist, welches das Verhältnis aus erwartetem Free Cash Flow zur Standardabweichung maximiert und dabei ein Investitionsdach mit 90% Sicherheit nicht überschreitet.